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Shift-Register Synthesis and BCH Decoding l 
JAMES L. MASSEY, MEMBER,  IEEE 

Abstract-It is shown in this paper that the iterative algorithm 
introduced by Berlekamp for decoding BCH codes actually provides 
a general solution to the problem of synthesizing the shortest linear 
feedback shift register capable of generating a prescribed finite 
sequence of digits. The shit-register approach leads to a simple 
proof of the validity of the algorithm as well as providing additional 
insight into its properties. The equivalence of the decoding problem 
for BCH codes to a shit-register synthesis problem is demonstrated, 
and other applications for the algorithm are suggested. 

I .INTR~DuCTI~N 

N THE FOLLOWING section, the problem of finding 
the shortest linear feedback shift register that can 
generate a given finite sequence of digits is studied. 

In Section III, an algorithm is developed that yields a 
simple recursive solution for this problem by synthesizing 
for n = 1, 2, . . . the shortest register that can generate 
the first n digits of this sequence. Sections IV and V 
provide a review of certain properties of shift-register 
sequences and of Bose-Chaudhuri-Hocquenghem (BCH) 
codes, and culminate in a demonstration that the major 
decoding problem for BCH codes is a shift-register 
synthesis problem of the type above. The shift-register 
synthesis algorithm of Section III is then seen to coincide 
with the iterative algorithm introduced recently by 
Berlekamp [l] for decoding the BCH codes. Finally, some 
additional applications for the algorithm are suggested. 

II. LENGTHPROPERTIES OF LFSR’s 

A general linear feedback shift register (LFSR) of length 
L is shown in Fig. 1 and consists of a cascade of L unit 
delay cells, or stages, with provision to form a linear 
combination of the cell contents, which then serves as the 
input to the first stage. The output of the LFSR is assumed 
to be taken from the last stage. The initial contents 
so, Sl, * * * , sL-, of the L stages coincide with the first L 
output digits, and the remaining output digits are uniquely 
determined by the recurson 

si = - 2 C&-i,  j = L, L + 1, L + 2, **. . (1) 
i-1 

The output digits and the feedback coefficients 
Cl, c2, * * + , cL are assumed to lie in the same field F, which 
can be either a finite field GF(q), or an infinite field, such 
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as the real number field. There is no requirement that 
cL # 0 (i.e., the last stage of the LFSR need not be tapped). 

An LFSR is said to generate a finite sequence 
so, 81, * * . , s~-~ when this sequence coincides with the 
first N output digits of the LFSR for some initial loading. 
If L 5 N, the LFSR always generates the sequence. 
If L < N, it follows from (1) that the LFSR generates the 
sequence if and only if 

Si + 2 CiSj-i = 0, j=L,L+l,...,N-1. (2) 
i=l 

The following simple theorem will play a key role in the 
subsequent development 

Theorem 1 

If some LFSR of length L generates the sequence 
so, 81, * * * , S~-~ but not the sequence so, sl, *. . , sN-1) SN, 
then any LFSR that generates the latter sequence has 
length L’, satisfying 

L’&-N+l-L. (3) 

Proof: For L 2 N, the theorem is trivially true so we 
may suppose that L < N. Let cl, c2, *. . , cL and c:, cl, 
. . . , CL, denote the connection coefficients of the two 
LFSR’s in question and assume that L’ 5 N - L, in 
violation of (3). By hypothesis 

(4) 

and 

- 5 c&s,.-~ = si, j = L’, L’ + 1, *. . , N. (5) 
k-l 

Therefore, it follows that 

- 8 Cis~-i = •I g Ci g C&N-i-k 

where the use of (5) in rewriting the left-hand side of (6) 
is justified by the fact that (s~-~, sN-L+I) . . . , sN--1] iS a 
subset of {sL,, s~,+~, . . . , sN--1]. Upon interchange of the 
order of summation, (6) becomes 

- g c&N-i = + g CL g CiSN-k-i 

= - 2 &+k 
= SN (7) 

where use has been made of (4) and (5), respectively. The 
use of (4) is justified by the fact that {sN-Ls, s~-L~+~, 
. . . , sN-11 iS a subset Of {SL, SL+I, * * * , -+-I}. But (7) 
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tive hypothesis, assume that L,(s) and some CcN’(D) have 
been found for N = 1, 2, . . . , n with equality obtaining 
in Lemma 1 for N = 1, 2, . * * , n - 1. We seek then to 
find L,+l(s) and some C(“+l) (D), and to show that equality 
obtains in Lemma 1 for N = n. 

By the induction hypothesis, we have from (2) that Fig. 1. General L-stage linear feedback shift-register (LFSR). 

contradicts (4) proving that the assumption L’ 5 N - L 
is untenable. We conclude that L’ 2 N + 1 - L as was 
to be shown. 

Now let s denote an infinite sequence so, sl, sz, . . * so 
that so, .sl, . . . , s,,-, forms the first N digits of s. We 
define LX(s) as the minimum of the lengths of all the 
LFSR’s that generate so, sl, . 1 . , SN--1. By our earlier 
remarks, LN(s) 6 N. Moreover, L,(s) must be monotoni- 
cally nondecreasing with increasing N. By way of con- 
vention, we shall say that the all-zero sequence is generated 
by the LFSR with length L = 0, and therefore that 
LN(s) = 0 if and only if so, sl, . . . , s&N-1 are all zeros. 

Lemma 1 

If some LFSR of length L,(s) generates so, sl, . - . , SN-l, 
but not so, sl, . . . , SN--1) sN, then 

LN+~(s) 2 m&x [LN(S)t N -I- 1 - L&)1. 
Proof: From the monotonicity of LN(s), we have 

LN+l(~) 2 LN(s). Under the hypothesis of the lemma, 
Theorem 1. implies that LN+l(~) 2 N + 1 - LN(s). 
Therefore the lemma follows. 

Lemma 1 will be used in the next section to demonstrate 
the minimality of the length of a shift register found by a 
synthesis algorithm for LFSR’s. A consequence of the 
resulting development will be a proof that the inequality 
in Lemma 1 can be replaced by an equality. 

III. THE LFSR SYNTHESIS ALGORITHM 

In this section, a recursive algorithm is derived for 
producing one of the LFSR’s of length LN(s), which 
generates so, sl, + . . , SN-l for N = 1, 2, 3, . . . . The 
discussion will be facilitated by defining the connection 
polynomial of the LFSR of Fig. 1 as the polynomial 

C(D) = 1 + c,D + czDz + . . . + cLDL (8) 

which has degree at most L in the indeterminate D. By 
way of convention, we take C(D) = 1 for the LFSR of 
length L = 0. 

When so, sl, . . . , s,,,-~ are all zeros but sN Z 0, then 
LN+I(s) = N $ 1 since any shorter LFSR must be 
initially loaded with all zeros and thus could generate 
only further zeros. Moreover, any LFSR with L = N + 1 
SUffiCeS to generate so, sl, . . * , sN--l) s, in this case. Note 
further that Lemma 1 holds with equality in this circum- 
stance. 

For a given s, let 

(I?“(D) = 1 + ciN’D + . . . + c;;(s) DLN(‘) (9) 
*denote the connection polynomial of a minimal-length 
L&s) LFSR that generates so, sl, + * * , sN--1. As an induc- 

L”(S) 
si + c cysjei = 

r 

0, j = L,(s), .f. ,n - 1 
(10) *=1 

d, j = n, 

where d,, which we call the next discrepancy, is the dif- 
ference between s, and the (n + 1) - st digit generated by 
the minimal-length LFSR, which we have found to gen- 
erate the first n digits of s. If d, = 0, then this LI~SR also 
generates the first n + 1 digits of s so that L,+l(s) = L,(s), 
and we may now take Ccn+l’(D) = C’“‘(D). 

If d, # 0, a new LFSR must be found to generate the 
first n + 1 digits of s. In this latter case, let m be the 
sequence length before the last length change in the 
minimal-length registers, i.e., 

L(s) < -us) 
(11) 

L+1(4 = L(s). 

Since a length change was required, the LFSR with con- 
nection polynomial C’%‘(D) and length L,n(s) could not 
have generated so, sl, * * * , smel, s,. Therefore, from (2) 
we have 

Lm(S) 
si + c cysi+ = 0, 

2=1 
i 

j = L,(s), ... , m - 1 

dm Z 0, j = m. (12) 
By the induction hypothesis, Lemma 1 holds with equality 
for N = m so that 

L,+l(s) = L,(s) = max L&9, m + 1 - L(s)1 
and in particular, because of (ll), this gives 

L,(s) = nz + 1 - L,(s). (13) 

We now claim that the connection polynomial 

C(D) = C(n’(D) - d,d,‘D”-“C’“‘(D) (14) 

is a valid next choice for C(*+l)(D). Note first from (14) 
that the degree of C(D) is at most 

max [L,(s), n - m + Lm(s)] = max [L,(s), n + 1 - Ln(s)] 

where the equality follows from (13). Hence C(D) is an 
allowable connection polynomial for a LFSR of length 
L where 

L = max [L,(s), n + 1 - L,,(s)]. 

Moreover, it follows from (14) that 

si + 5 C&-i = sj + Lg’ cf”‘si-i - d,d,’ 
i=l i=l 

05) 

[ 

L,(S) 

. sj-n+m + 2 CtmLcm-i 
3 

i 
0 = j = L, L + 1, . . . , n - 1 

Id,, - d,dZ’d, = 0, j = n 
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where the last equalities result from the use of (10) and 
(12). Therefore, -it follows from (2) that the LFSR of 
length L with connection polynomial C(D) generates the 
n + 1 digits s,,, sl, . . . , s,. Since L in (15) satisfies Lemma 
1 with equality, we conclude that L = L,,(s), and therefore 
that equality in Lemma 1 is always obtained. Thus we 
have proved Theorem ‘2. 

Theorem d 

when, according to Theorem 2, a length change is needed. 
In this case, the present C(D) for subsequent iterations 
will be the last connection polynomial before the latest 
length change and therefore becomes ‘the new B(D) = 
Cm)(D). Second, suppose that the first nonzero d occurs 
in step 2) with N = Ic. This implies so = s1 = * . . = 
Sk-l = 0 and sk # 0. At this time, L = L,(s) = 0 and, 
therefore, the sequence length before the last length change 
is undefined, since no LFSR can have length less than 
zero. Thus the rule of (14) for computing the next con- 
nection polynomial is not applicable. However, in this 
case, the initialization in step 1) has the effect of causing 
step 5) to be applied, which then results in C(D) = 
@k+l)(D) = 1 - dDk+’ and L = L,+,(s) = k + 1. We 
have already pointed out that any length Ic + 1 LFSR is 
a valid solution for this case. 

If some LFSR of length L&s), which generates so, al, 
. . . , sNel, also generates so, sl, . . . , s~-~, slv, then LN+l(s) = 
L&s). Conversely, if some LFSR of length LN(s) that 
generates so, sl, . . . , s~-~ fails to generate so, sl, . * . , SW-,, 
sN, then L,+,(s) = max [L,(s), N + 1 - LN(s)]. 

Moreover, our proof of Theorem 2 was a constructive 
proof, which establishes the validity of the following 
algorithm for synthesizing a shortest LFSR to generate 
the sequence so, si, * * * , snW1. 

LFSR Synthesis Algorithm (Berlekamp Iterative Algorithm): 

1) 

2) 

1 -+ C(D) 1 -+ B(D) l--,X 
O-+L 1-b O+N 
If N = n, stop. Otherwise compute 

d = SN + g C<SN-i. 

3) 
4) 

5) 

Ifd=O,thenx+l+=x,andgoto6). 
If d # 0 and 2L > N, then 
C(D) - d b-’ D” B(D) + C(D) 
x+1+x 
and go to 6). 
If d # 0 and 2L 6 N, then 
C(D) + T(D) [temporary storage of C(D)] 
C(D) - d b-l D” B(D) --+ C(D) 
N+l-L+L 
T(D) -+ BP) 
d-+6 
1 ---) 2. 

6) N+ leNandreturnto2). 

For every n, when N = n and step 2) has just been 
reached, then the quantities produced by the algorithm 
bear the following relations to the quantities appearing 
in the development preceding Theorem 2: 

C(D) = C(“)(D) 

L = L,(s) 

x=n-m 

d = d,, (assuming the 
computation in step 2) is performed) 

B(D) = C+‘(D) 

b d,. = 

That the algorithm implements the procedure derived 
preceding Theorem 2 should be evident except for the 
following two points. First, step_5) is carried out only 

In Fig. 2 the results are shown for the application of the 
algorithm to the binary [F = GF(2)] sequence so, sl, * * * , s4 
= 1, 0, 1, 0, 0. Note that the resulting LFSR is singular 
(i.e., ca = 0) and the last stage is not tapped. 

A logical circuit for implementing the algorithm is 
shown in Fig. 3 and is seen to require 3L, + 1 memory 
cells, where each cell can store a digit in the field F, and 
where L, is the maximum length of an LFSR that can be 
produced with this circuitry. 

Up to this point we have considered only the problem 
of finding one of the minimal-length registers that generate 
a specified sequence, but the set of all minimal-length 
L,(s) LSFR’s that generate so, sl, . . . , s,,-~ can also readily 
be found from the LFSR synthesis algorithm. From 
Theorem 2, we observe that when some LFSR of length 
LN(s) that generates so, sl, . . . , s~-~ fails to generate 
SO, 81, " e , SN-1, %V, there will then be a length change 
[LN+l(~) > LN(s)] if and only if AL, 5 N. It follows 
that the minimal-length LFSR is unique if and only if 
2&(s) g N. Therefore, when the algorithm terminates 
with 2L > n, the resulting minimal-length LFSR is not 
unique. In this case, however, the resulting LFSR would 
be the unique solution if the additional digits s,,, s,,+~, 
. . . , saLql were to be specified in agreement with the 
output sequence of this LFSR. Moreover, for any assign- 
ment of these 2L - n additional digits, only steps 3) or 4) 
of the algorithm would be used to produce new connection 
polynomials, i.e., the pattern of the 2L - n next dis- 
crepancies d serve only to determine a polynomial multiple 
of the unchanging B(D), which will be added to produce 
the final C(D), and some choice of this pattern must 
result in every possible LFSR of length L,(s) that gen- 
erates so, sl, . * * , s,,-~. These remarks are summarized in 
the following theorem. 

Theorem S 

Suppose ‘the LFSR synthesis- algorithm is applied 
to the sequence so, sl, . . . , snVl and let L, C(D), 2, and 
B(D) denote the values when the algorithm terminates. 
If 2L 5 n, then C(D) is the connection polynomial of 
the unique minimal-length L LFSR that generates the 
sequence. If 2L > n, then the set of polynomials 
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N 1 C(D) LFSR x E(D) b sN d 

0 0 1 1 1 1 1 I 

11 l+D 
b " 'O' 

2 1 1 w 21 Ill 

3 2 1+02 Lof- 1 1 1 0 0 

4 2 1+02 Lcrf- 2 1 1 0 1 

5 3 1 TTT_t-' 1+02 1 

Fig. 2. Example of application of the LFSR synthesis algorithm to 
the binary sequence sO, sl, s2, sQ, s4 = 1, 0, 1, 0, 0. 

{C(D) + Q(D) D"W4: 

degree of Q(D) less than 2L - n}, 

is the set of connection polynomials for all of the minimal- 
length-L LFSR’s that generate the sequence. 

For instance, in the example shown in Fig. 2, Theorem 3 
gives the allowable Q(D) to be either 0 or 1. Hence the 
set of connection polynomials { 1, 1 + D + D3) specifies 
both L = 3 LFSR’s that generate the given n = 5 
sequence. The following is an immediate consequence 
of Theorem 3 

Corollary 
If 2L,(s) < n, then the LFSR synthesis algorithm 

will already have produced the unique minimal-length 
solution, i.e., L = L,(s) and C(D) = C’“’ (D), when 
N = 2L,(s) in (2), i.e., after only the first 2L,(s) digits 
have been processed by the algorithm. 

For instance, if the sequence so, sl, * * * , s,,-% is a non- 
zero cycle of length n = 21°0-1 from a 100 stage maximal- 
length LFSR, then the algorithm has necessarily found 
the unique generating LFSR after the first 2L = 200 
digits have been processed. 

The LFSR synthesis algorithm given in this section 
is (practically) identical to the iterative algorithm de- 
veloped by Berlekamp [l] for decoding the BCH codes, 
as will be seen in Section V. It should be noted that when 
2L = N + 1 and d f: 0, it is then permissible to modify 
step 4) of the algorithm so that B(D) is replaced by the 
old C(D). The reason for this is that it can be shown that 
rather than taking Ccm’(D) as the last connection poly- 
nomial before a length change, it suffices more generally 
to choose Ccm’(D) as any of the previous connection 
polynomials for which d, # 0 and m - L,(s) is max- 
imized. When d,, # 0 and 2L,(s) = n + 1, then 
n - L,(s) = m - L,(s) so that C’“‘(D) is an allowable 
replacement for C(m) (D) . Berlekamp’s algorithm contains 
an additional test for deciding whether to replace Cc”“(D) 
in this case, but there seems to be no advantage deriving 
from it so that we have excluded such a test from the 
LFSR synthesis algorithm. 

(NOTES REGISTER o WILL CONTAIN COEFFICIENTS 
ff B(D) SHIFTED x - 1 POSITIONS TO RIGHT) 

UPPER LOGIC 

REGISTER C 

LWER LOGIC 

REGISTER B 

%I 
1 REGISTER S 

e(b)" 

RULES OF OPERATICN: ACTIVATE LOllER LOGIC. 
IF d = 0, SHIFT 8 AN0 S REGISTERS ONE POSITION. 
IF d # 0 AND 2L > N. HWE SWITCHES TO POLE 1 
AND A'CTIVATE UPPER iOGIC, THEN SHIFT B AND S 
REGISTERS ONE POSITION. 
IF d # 0 AND IL 2 N, MWE SWITCHES TO POLE 2 

AND ACTIVATE UPPER LOGIC, REPLACE b BY d AND 
REPLACE L BY N + 1 - L, THEN SHIFT B AN0 S 
REGISTERS ONE POSITION AND LOAD A 1 INTO THE 
FIRST STAGE OF REGISTER 6. 

Fig. 3. A logical circuit for implementing the LFSR synthesis 
algorithm. 

IV. CLASSICAL DESCRIPTION OF LFSR SEQUENCES 

In this section, we review some properties of LFSR- 
generated sequences with a view toward applying this 
material to BCH codes in the sequel. 

It will prove convenient to describe the sequence s = 
so, 81, . * . by its Huffman D-transform 

S(D) = so + s,D + spDz + . . . . (16) 

From (8) and (16), we see that (2) simply specifies that 
the degree j term in the product C(D) S(D) vanishes 
forj=L,L+l,L+2,... . Hence, (2) may be rewritten 
as 

C(D) S(D) = P(D) 

or 

S(D) = ‘g (17) 

where 

P(D) = po + p,D + .a. + p,-ID=-’ (18) 

is a polynomial of degree less than L. Moreover, from 
(17) and (18), we find the matrix equation 

!-PO-j p 0 *** 0 opo-j 

which relates the coefficients of P(D) to the connection 
coefficients and the initial contents of the LFSR. Since 
the matrix in (19) is nonsingular, it follows that for every 
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P(D) as in (18) there will be a unique corresponding 
assignment of initial conditions. We may summarize in 
Theorem 4. 

Theorem 4 

The output sequences generated by an L-stage LFSR 
with connection polynomial C(D) is the set {s) of se- 
quences corresponding to the set of transforms 

{ 
S(D) = ‘$ , degree of P(D) less than L 

1 
. 

Theorem 4 shows that s is an output sequence of some 
LFSR if and only if its transform S(D) is a rational func- 
tion, i.e., a ratio of polynomials A(D)/B(D), with 
B(0) # 0. Moreover, if A(D) and B(D) are relatively 
prime polynomials (i.e., have no common factor of degree 
one or greater), then it follows directly from Theorem 4 
that B(D), within a constant factor required to make 
B(0) = 1, is the unique connection polynomial of the 
shortest LFSR that generates s, and the length of this 
LFSR is the maximum of the degree of B(D) and the 
degree of A(D) plus one. Restating these remarks, we 
have the following. 

Corollary 

If S(D) = P(D)/C(D) where P(D) and C(D) are 
relatively prime polynomials and C(0) = 1, then C(D) 
is the connection polynomial of the shortest LFSR that 
generates the sequence s whose transform is X(D), and 

L,(s) = max [degree of C(D), 1 + degree of P(D)]. (20) 

V. APPLICATIONTO DECODINGOFTHE BCH CODES 

Let g(X) = go + glX + . . . 4 ch X'-' + X', go Z 0, 
be a manic polynomial of degree r, r 2 1, with coefficients 
in some finite field GF(q). Let n be the least integer such 
that g(X) divides X” - 1. With every n-tuple f = 
[fo, fl, * * . , fnwl] of elements of GF(a), associate the poly- 
nomial f(X) = f. + flX + a.* + fn-lXn-l of degree 
less than n. Then the cyclic code generated by g(X) is 
the set of n-tuples f such that g(X) divides f(X). The 
length is n digits and the code redundancy is r digits. 

A Bose-Chaudhuri-Hocquenghem (BCH) code [2] 
is a cyclic code where g(X) is chosen to be the minimum- 
degree manic polynomial with coefficients in GF(q) having 
amno , g.+1, . . . ) a m0+d-2 as roots where a! is a specified 
nonzero element of GF(q”), m, is some positive integer, 
and d, d 2 2, is any integer such that the d - 1 specified 
roots of g(X) are all distinct. We shall call such a code a 
BCH (cy, q, m,, d) code when we wish to specify the main 
parameters. It is well known that such a BCH code has 
minimum distance at least d, and d is sometimes called 
the design distance of the code. 

If a codeword f in a BCH (LY, q, m,, d) code is trans- 
mitted, and an n-tuple r = [ro,‘r,, . . * , r,-,] of elements 
from GF(q) is received, then e = [eo, el, . . * , en-, ] = r - f 
is called the error pattern. Associating polynomials with 

‘, 
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e and r as was done with f, we have 

49 = f(X) + e(X). (21) 

With the error polynomial e(X), one associates the 
weighted power sum symmetric functions X,, S,, . . . de- 
fined by 

Si = e(a’), i = 1, 2, 3, * * * . (22) 

Since g(X) divides f(X), all roots of g(X) are also roots 
of f(X) so that from (21) and (22) it follows that 

Si = r(ai), 

i=m,,m,+l,...,m,+d-2, (23) 

and hence that this set of d - 1 consecutive S can be 
formed at the receiver. This can be accomplished with 
simple logical circuitry [2]. The BCH decoding problem 
simply stated is the following. Given the d - 1 consecutive 
Si defined in (23), find the error pattern e(X). 

Let t be the Hamming weight of the error pattern e, 
i.e., the number of nonzero components. If the jth non- 
zero component in e is the digit ek, then Xj = cyL is called 
the locator of this error and Yi = ek is the error magnitude. 
Xi is an element of GF(q”) and Y+ is an element of GF(q). 
From (22), it follows that 

si = k Y,X::, i = 1, 2, 3, *a* . (24) 
i-l 

For binary codes (q = 2), the error locators completely 
describe the error pattern since Yj = 1, j = 1, 2, . . . , t. 
For general q, Forney [3] has given a simple procedure 
for determining the error magnitudes given the error lo- 
cators. Therefore the essential BCH decoding problem 
reduces to the following. Given S,,, S,, + 1, . . . , 
S,, + d - 2, find the error locators X1, X2, *. . , X,. 

Following Berlekamp [l], we first observe that 

1 
1 - XiD = l’+XiD+X~D’+ ***. 

Multiplying by YiXyO in (25) and summing, we obtain 
with the aid of (24) 

g 1 :%;* = S,, + S,,,,D + Sm,+2D2 + -a. . (26) 

The left-hand side of (26) is recognized to be the partial 
fraction expansion of P(D)/C(D), where 

C(D) = fi (1 - X,.0) (27) 
i-l 

and 

P(D). = k Y,X:O h (1 - X,D>. \ (33) 
i-l k=1 

k#i 

Therefore, we may write 

___ = Sm, + &no+4 + S,o+2D2 + -- + 
C(D) (29) 
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where C(0) = 1 and where P(D) and C(D) are relatively 
prime polynomials. This latter property follows from the 
fact that if P(D) and C(D) had any common factors of 
degree at least one, then the partial fraction expansion of 
their ratio must have fewer nonzero terms than the degree 
of C(D) contrary to (26). From (27) and (25), we see that 
the degree of C(D) is exactly t, while the degree of P(D) 
is less than t. From (29) and the corollary of Theorem 4, 
Theorem 5 then follows. 

Theorem 5 

The polynomial C(D) defined by (27) is the connection 
polynomial of the unique shortest LFSR over F = GF(q”) 
that generates the sequence S,,, S,, + 1, S,, + 2, . . . . 

From (27), it follows that the t roots of C(D) are the 
reciprocals of the t error locators. Chien [4] has given a 
simple means for implementing the task of finding the 
roots from C(D) so that the essential decoding problem 
for the BCH codes reduces finally to the following. Given 
&no, fL, + 1, * * * , S,, + d - 2, find the polynomial C(D) 
in (27). From Theorem 5 and the corollary of Theorem 3, 
it follows that the LFSR synthesis algorithm may be used 
to solve this decoding problem when the error pattern has 
weight guaranteed correctable by the design distance of 
the code. We state this fact as the following corollary. 

Corollary 

When the weight t of the error pattern e satisfies 
2t 5 d - 1, then C(D) defined by (27) is the connection 
polynomial of the unique shortest LFSR over GF(q”) 
that generates the sequence XmO, x,0 + 1, . . . , SmO + 
d - 2 and therefore will be produced when the LFSR 
synthesis algorithm is applied to this n = d - 1 digit 
sequence. 

The determination of C(D) from the sequence given in 
this corollary is precisely the function of the interative 
algorithm developed by Berlekamp [l]. In fact, the LFSR 
synthesis algorithm of Section III is (except for the minor 
variation noted earlier) precisely the Berlekamp algorithm 
abstracted from its particular application to the decoding 
of the BCH codes. 

The reader is referred to Berlekamp [I] for 1) a dis- 
cussion of the simplification that occurs when the algo- 
rithm is used with binary BCH codes, namely d = 0 
automatically in step 2) when N is odd, 2) applicability 
of the algorithm to errors-and-erasures decoding, and 3) 
modifications by which the algorithm can be extended to 
correct some errors of weight t with 2t > d - 1, essentially 
by postulating additional Xi, i > m, + d - 1, at the 
receiver. 

VI. ADDITIONAL APPLICATIONS 

There appears to be a number of interesting applications 
for the LFSR synthesis algorithm of Section III. The most 
obvious is that of finding a simple digital device to generate 
a prescribed binary sequence with useful properties in 
some application. Less obviously, the algorithm might be 
used as part of a source coder, or data compressor, for a 

127 

binary data source whose output contains considerable 
redundancy. For instance, the source digits might be 
processed by the algorithm in blocks of 127 digits. Each 
block could then be represented for transmission as a 
7-bit block giving the length L of the shortest LFSR that 
generates the original sequence, followed by L bits to 
indicate the values of the tap connections and a further 
L bits giving the initial contents of the LFSR. Therefore, 
a total of 2L + 7 bits would be transmitted in place of the 
original 127 bits. Such a data compression scheme could 
be expected to perform efficiently only when the underlying 
constraints producing the source redundancy were with 
high probability linear relations among the binary source 
digits. 

VII. REMARKS 

It should be pointed out that although the (Ci 1 and (sj ) 
considered in Sections II and III were assumed to lie in a 
field F, the proofs of Theorem 1 and Lemma 1 made no use 
of the existence of a multiplicative inverse in F. Hence 
Theorem 1 and Lemma 1 remain valid under the weaker 
hypothesis that the (ci) and (si} are elements of a com- 
mutative ring. 

Two developments that have come to our attention 
since the initial manuscript of this paper was prepared 
are deserving of mention. H. H. Harris of the Honeywell 
Corp., St. Petersburg, Fla. (private communication) has 
simulated a data compression scheme similar to that 
described in Section VI and reports an approximate 50- 
percent data reduction for digitized voice data. Zierler 
[5] has recently described the BCH decoding problem as 
a problem in ideals over polynomial rings in terms that’ 
are formally equivalent to Theorem 5 above. 
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